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On the forced motion due to heating of a deep 
rotating liquid in an annulus 

By T. V. DAVIES 
King’s College, London? 

(Received 14 Auguet 1958 and in revised form 7 November 1958) 

In  the laboratory experiments by Fultz & RiehI (1957) and by Hide (1958) on 
heated rotating liquids contained in the annulus between two cylinders, it  has 
been observed that a strongly marked jet stream appears on the free surface of the 
liquid under certain conditions of rotating and heating. This jet stream meanders 
around the annulus in a regular wave-like pattern alternately approaching the 
outer and inner cylindrical boundaries. The present paper puts forward an 
analytical theory for this jet, or Rossby regime, in the course of which exact 
solutions are presented of certain fundamental non-linear partial differential 
equations. The assumption is made that the flow is geostrophic at the first approxi- 
mation and that the heat transfer across the stream lines of geostrophic flow (that 
is, the isobars) is due to molecular conduction. From a calculation of the heat flow 
it appears that this leads to values of the heat transfer which are too small, so that 
the ageostrophic terms must be of importance in the actual heat transfer; never- 
theless, the exact solution obtained here probably reveals the mechanism of the 
change from one wave pattern to another and certainly provides an explanation 
for the observed upper limit to the number of waves in a given geometrical 
configuration, as discussed by Hide. It has been established that the mean zonal 
flow and mean zonal temperature field are dependent upon the amplitude function 
of a finite amplitude wave solution. In  this exact solution it is found that the 
amplitude and phase functions of the wave patterns are themselves interdepen- 
dent and that the shape of the wave depends on the quantity of heat and angular 
momentum being transferred. It is shown that the wave pattern consisting of an 
integral number m lobes or petals can exist only in a restricted range of the Rossby 
number 8-this is well-known from the experimental work of Fultz and Hide. 

Introduction 
In  the laboratory experiments by Fultz & Riehl(l957) and Hide (1958), liquid 

contained in the annulus between two concentric circular cylinders (radii b and 
a ( < b) :  see figure 1) is bounded below by a horizontal smooth surface and bounded 
above by a free surface. The cylinders are constrained to rotate steadily about 
their common axis, the outer cylinder being maintained at a temperature and 
the inner at a temperature T, ( c q). Under certain circumstances of rotation and 
heating, the forced flow of the liquid relative to the cylinders consists of a well- 
marked wave pattern in which the fluid motion is principally horizontal and in 

f Now at University College of Wales, Aberystwyth. 
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which a clearly defined jet stream can be observed on the free upper surface. The 
jet meanders regularly around the wave pattern, and the whole wave pattern plus 
the jet rotates relatively to the cylinders. A particular m-lobed wave pattern may 
be maintained indefinitely under constant conditions of rotation and temperature 
difference Tb - T,, but can be changed by variation of either of these quantities. 
A discussion of the stability of the wave pattern has 

cipally upon one parameter known as the Rossby :B (1956), and in this paper it was shown theoretically that 
the stability of the wave pattern is dependent prin- 

assume that the wave amplitudes of the perturbation .... 
are infinitesimal compared, say, with the annulus radius ‘* *.. 
(b  - a), and the results of such analyses will apply only 
to the initial stages of the wave growth under unstable F~~~~~ 1. Definition 
conditions. The waves have an amplitude which is sketch. 
almost as large as the distance (b  -a) ,  and this finiteness 
of amplitude can no longer be ignored in the investigation of the jet stream 
problem. This implies that the analytical investigation of the jet stream problem 
is necessarily one involving non-linear equations; until recently the only attempts 
which had been made to understand the jet stream structures mathematically 
were by numerical methods (Phillips 1956). 

An analytical approach to the problem is possible, however, and the first step 
in this direction has been made by Miss Ruth Rogers (1959) who has investigated 
rectilinear jets using thermal boundary layer concepts in the heat transfer 
equation. The existence of such a rectilinear jet solution suggested to the present 
author that it might be profitable to investigate the corresponding jet problem in 
cylindrical co-ordinates and the present paper is a summary of the findings. It is 
interesting to note, however, that the boundarylayer type of approximationmade 
by Miss Rogers is not necessary in dealing with the present cylinder problem, and 
the solutions are correspondingly more valuable. 

In  the solution presented here it is found convenient to introduce amplitude 
and phase functions for the wave, and it then emerges that the zonal temperature 
field and the zonal flow can be expressed in terms of the amplitude and phase 
functions, which is something one would have expected from the many qualitative 
discussions of the corresponding meteorological problem (see, for instance, 
Lorenz 1957). It is found that the amplitude function and phase function are 
interdependent: one of these functions must be postulated before the complete 
solution can be obtained. Some guidance in postulating the nature of the phase 
function can be obtained from investigating the angular momentum and heat 
transfer associated with the wave. Particular examples illustrating different 
types of transfer have been included in this paper. One of the important results 
obtained is that the shape of the wave is dependent upon not only the amount of 
angular momentum transferred but also the amount of heat transferred ; with an 
m-lobed wave pattern it is possible to transfer different amounts of heat and 
angular momentum within certain ranges. The m-lobed wave pattern is shown to 

been made by the present author in an earlier paper g u  

number 8. In  such stability analyses one is forced to h i . .,~ - - - 2  -- .._ .i 
I--._ i ,,*’ , ____..___ , , ;,; ; . .; 
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On the forced motion of a deep rotating Jluid 595 

exist only in certain ranges of the rotation and Rossby number, and when these 
ranges are combined with those obtained by the author in the earlier stability 
paper (1956) it  is then possible to understand the complete stability diagram 
which has been obtained experimentally by Fultz (1956),  and in particular to 
understand why there is a maximum number of waves possible in any given 
geometrical configuration. A result of secondary importance is that the steady 
solutions obtained here exist only if the ratio of the inner radius to the outer 
radius of the annulus is greater than a certain critical quantity. This implies that 
the steady wave regime cannot be maintained permanently in the open dishpan 
experiment. 

A comparison of the theoretical absolute heat transport across either cylindrical 
boundary with that observed by Fultz indicates a variation with m in the correct 
sense, but the magnitude is considerably in error. 

1. Statement of problem and method of solution 
The dynamical equations of motion and the equation of heat transfer for 

a liquid contain terms which arise from the viscous stresses. One of the most 
striking features of the experiments conducted by Fultz & Riehl and by Hide is 
the negligible diffusion of the jet stream-a feature in which one might expect the 
viscous stresses to play a fundamental role. It is clear from order of magnitude 
arguments that the geostrophic approximation and the consequent ‘thermal 
wind’ together give results for the velocity field which are already good approxi- 
mations (Davies 1953); and it would appear, although it is not possible to state 
this with precision, that there is probably a primary balance in the dynamical 
equations between the Coriolis acceleration terms and the pressure gradient (that is 
a geostrophic balance) and a separate but secondary balance between the viscous 
and inertia terms as in boundary-layer theory. Accordingly, in this non-viscous 
formulation of a theory of the experiments, molecular viscosity will be ignored 
completely. 

In the absence of any heating the mean density of the liquid is taken to be pot 
and the small departure from this density due to a temperature increase r above 
the mean is taken to be - a7, where a = 2-55 x g/cm3 degree. Axes will be 
chosen which rotate steadily at an angular velocity o about the fixed central 
z-axis, and the equations governing the motions will then be 

1 ap* 2wv* = --- 
at* Po ax* 9 

dv* 1 ap* -+2wu* = - -- 
at* Po 8 9 ’  

p __ = - +gar*, 
O at* 

-+-+-= 0, 

du* -- 

dw* ap* 

au* av* aw* 
ax* ay* az* 

d7* 

at* 
- = K V 2 T * ,  
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596 T .  V. Davies 
where K is the thermometric conductivity. Suppose that the typical temperature 
difference imposed externally in this problem is (AT)H, the suffix referring to 
a horizontal temperature contrast; then, if the liquid depth is h, we can introduce 
the non-dimensional symbols x ,  y, . . . , p defined by 

(1.6) I X* = bx, y* = by ,  Z* = h ~ ;  

U* = 2wbSu, V* = 2 w b S v ,  W* = 2whSw; 

t* = t/2wX, T* = ( A T ) H T ,  p* = 4b2W2p08p; 

where the Rossby number S is defined by 

With these transformations the equations (1.1) to (1.5) become 

where 

du aP 

dv aP s-+u= --, 
at aY 

%-"= -- ax' 

a 2  a 2  V&=-+- ax a y 2 *  

(1.10) 

(1.11) 

(1.12) 

(1.13) 

Now theRossby number in jet flows is asmall quantity of the order0.1 to 0.01, and 
it is clear that the leading approximations to equations (1.8) to (1.12) will be as 
follows: 

(1.14) 

The first two equations represent the well-known geostrophic approximations for 
the horizontal motion, and combined with the fourth equation they lead to the 
equally well-known thermal wind equation of meteorology. The zero vertical 
velocity is a consequence of the vanishing of the horizontal divergence for the flow 
(uo, vo) coupled with (1.11). The heat transfer equation we treat in a more exact 
way, since if the conductivity is ignored it then follows that the isotherms and 
isobars everywhere coincide and there can be no heat transfer across the flow. We 
therefore retain the conductivity terms in (1.12) in order to ensure that there is 
a transfer of heat across the flow. On the left-hand side of (1.12), d/dt is an operator 
following the motion; but if we choose the angular velocity w to be the-angular 
velocity with which the wave system rotates relative to fixed axes in space, then 
the ajat term in d/dt can be omitted and the first approximation to (1.12) is 

(1.15) 
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Equations (1.14) and ( 1.15) represent the equations of the first approximation, 
and the equations governing higher approximations will be developed later in 
this paper. When we substitute for uo, vo, 70 from (1.14) in (1.15), the resulting 
equation is a non-linear partial differential equation for po, namely 

This is the equation derived originally by Miss Ruth Rogers (1959) in the investi- 
gation of the rectilinear jet. 

One of the first points of interest concerning (1.16) is that to any solution found 
for 70 may be added an arbitrary linear function of z. Detailed measurements of 
the three-dimensional temperature field in the annulus experiment have been 
given by Fultz & Riehl(1957), and it is clear from these results that the mean 
vertical temperature field is approximately a linear function of z (except for an 
evaporation layer near the free surface). When this linear variation of temperature 
is subtracted from 7 0 ,  the resulting temperature variation in the vertical is slow; 
hence if we introduce a new temperature function To defined by 

70 = cz+d+To, (1.17) 

and a corresponding new pressure function Po which differs fromp, by a quadratic 
function of z, then To and Po will have a slow variation in the vertical, and it will be 
sufficiently accurate, in the case of a liquid whose depth is large compared with 
the horizontal dimension, to simplify (1.16) to the form 

where E = K / 2 W b 2 S .  (1.19) 
The non-dimensional constant E is nothing more than a scaling constant, for if we 
write Po = EP& To = ETA, this constant cancels out in (1.17). It is a little more 
convenient, however, to write Po = ePA/m, To = eTA/m, where m is the wave 
number (see (1.22)), and we shall consider (1.18) in the form 

ap0 ax aTo ay ap0 ay aTo ax = m ( s + $ )  ( T o = Z ) .  (1.20) 

(The dashes have not been retained in the dependent variables of this equation.) 
It may be noted that, using typical experimental values for all the constants, the 
value of the constant E is about 

We shall consider equation (1.20) in terms of polar co-ordinates ( r ,  O ) ,  where 
x = r cos 0, y = r sin 8. In  this case (1 2 0 )  becomes 

(1.21) 

It may be observed that equation (1.20) is invariant with respect to a complex 

transformation a+ib = f(x+iy),  

ax % ay ax I since 

and 
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However, no use has been made of this interesting feature in this paper, although 
it can be used in extending the solutions obtained by Miss Rogers. 

One of the most striking features of the experimental jet flows is the existence 
of a periodic structure in the @direction in which there is one regular well-marked 
stable wave pattern with a particular wave number m,. This suggests that we 
investigate a solution of (1.21) of the form 

(1.22) Po = f+ g sinme + h cos me, 

To = F+GsinmB+Hcosmi91 (1.23) 

where m is an integer and wheref, g, . . . , H are functions of r, z only, although the 
x-variation of each of these functions is slow. When we substitute (1.22) and (1.23) 
in the left-hand side of (1.21)) this side of the equation becomes 

When we substitute (1.23) in the right-hand side of (1.21), there will be no terms 
in cos 2mB or sin 2mB; hence we must have 

1.25) 

1.26) 

Comparing the remaining terms on the right-hand side with the corresponding 
ones in (1.24), we obtain the following three equations: 

(1.27) 

(1.28) 

(1.29) 

In  addition to the five equations (1.25) to (1.29), it  follows also from To = aPo/az 

(1.30) 
that 

p = -  af 
az )  

(1.31) 

(1.32) 
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If we had retained the term a2r0/az2, the only difference to the above equations 
would be the addition of terms a2F/az2, a2H/az2 and a2G/az2 on the right-hand 
sides of (1.27), (1.28) and (1.29) respectively. The equations (1.25) to (1.32) are 
still a non-linear set, and the principal aim now will be to obtain solutions which 
satisfy prescribed boundary conditions at the cylindrical boundaries. 

Consider first of all equations (1.25) and (1.26). These are linear equations in 
h and g, and if, for example, g is eliminated between these two equations a second- 
order equation in r will be obtained for h. Hence, the general solution for h will 
contain two arbitrary functions of z. It is not necessary to perform this elimina- 
tion, for it may be seen that the solutions for g and h will be 

g = A(z )H +B(z) G,  (1.33) 

171 = - A ( z ) G + B ( z ) H ,  (1.34) 

where A and Bare arbitrary functions of x .  Using (1.31) and (1.32) i t  now follows 
that G and H must satisfy the equations 

d 
G = - - (A(z )H+B(z)G) ,  az 
H = - { - A ( z ) G + B ( z ) H } ,  a 

ax 

(1.35) 

(1.36) 

and i t  is clear that the ultimate solutions for G and H will depend upon the nature 
of the variation of the functions A@)  and B(z). 

Consider now equation (1.27) which we can write in the form 

using (1.33) and (1.34) this becomes 

which has the first integral 

(1.37) 

where x is a function of z only. It is convenient at this stage to introduce local 
amplitude and local phase functions Q, and Y respectively, in place of H and a, 
and we shall define these functions as follows: 

G = Q,sinY, H = @COSY. (1.38) 

In  terms of these new functions, (1.37) becomes 

(1.39) 

and if for convenience we use R in place of r as independent variable, where 

R = log,r, r = eR, T-  a a  = - 
ar aR’ (1.40) 
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then (1.39) may be written in the form 

(1.41) 
aF _ -  aR - -&A(z) W + X ( Z ) .  

In  terms of R, equations (1.28) and (1.29) may be written as follows: 

If we multiply (1.42) by H ,  (1.43) by G and add, we obtain 

It is easily shown from (1.38) that 

and thus when we make use of (1.33) and (1.34) we obtain 

( 1.42) 

(1.43) 

(1.44) 

Comparing (1.41) and (1.44), it now follows that @ and Y are related by the 

( 1.45) 

Using (1.42) and (1.43) once more, multiplying the former by h, the latter by g and 
adding, we obtain 

(hG-gH)af  aR = h ( g  

Substituting in this equation for h and g from (1.33) and (1.34), we obtain 

(Z ) -AW- af = ( B H - A G )  + ( A H + B G )  - -m2G 
aR 

and from (1.38) it is easily shown that 

Hence the equation for af/aR becomes 
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We may note at this stage that (1.41) or (1.44) is an equation which defines 
8FIaR in terms of @ and Y, and that (1.46) defines aflaR in terms of @ and Y. 
Bearing in mind equation (1.30), which we can write alternatively in the form 

(1.47) 

it follows that when we substitute for aF/aR and af/aR we obtain 8, second-order 
partial differential relation between @ and Y which, coupled with (1.45), gives 
a complete solution of the problem. This second relation which follows from 
(1.47) is 

In order to exploit equations (1.45) and (1.48) it  is necessary to be able to 
separate the variables R and z. Without going into detail, it  is sufficient to state 
that this is possible if, and only if, 

(1.49) 
1 

@ = -  
~ ( 2 )  4(R)7 

(1.50) 

and aY/aR is independent of z, where #(R) is a function of R only and j is a con- 
stant. If one uses the above formulae, it follows that aF/aR is then given by 

$(R) satisfies the equation 

and finally, in order to satisfy (1.48) or (1.47), we must have 

(1.51) 

(1.52) 

(1.53) 

(1 5 4 )  

Although the method of separating the variables is not dong the lines of the 
well-known method used for linear partial differential equations, it is convenient 
to regard j as the separation constant. 

Before proceeding further it is useful to express the temperature and pressure 
in terms of the amplitude and phase functions. If we substitute for G and H from 
(1.38) in (1.23), we obtain 

To = F+@cos(mB-Y), (1.55) 

(1.56) 
1 

hence To = P+-$(R)cos(mB-Y). A 
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Similarly, if we substitute for g and h from (1.33), (1.34) in (1.22), we obtain 

Po = f +  A(Hsinm6 - G COB me) + B(G sinm6 + N cos me), 

hence, using (1.38), 

Po = f + A @ sin (me - Y )  + BcD cos (me - Y). (1.57) 

Finally, making use of (1.49), we have 

(1.58) Po = f + $( R) sin (me - Y) + - $ (R)  cos (me - 9"). 

It is clear that $(R) can be determined from (1.52) when dY/dR is known, and 
that B can be determined from (1.54) when A is known; hence, the knowledge of 
d Y / d R  as a function of R and of A as a function of z will be sufficient (together with 
the boundary conditions) to determine q5, B, F andf. The unknown constant 
j will, we shall find, be determined as an eigen-value similar to linear theory. It is 
important to point out that aY (R, z)/i3R is a function of R only and the function Y 
is necessarily a function of R only, as may be verified from (1.35) or (1.36). This 
means that, with the present solution of the problem, that part of the temperature 
field which depends upon 6 does not show variation in the vertical. This feature of 
the temperature field (not of the pressure field it may be noted) is contrary to the 
experiment where a phase change in the vertical is present in the temperature 
structure. This phase change will be discussed in greater detail in a future paper. 
To conclude this section we may note, from (1.51) and (1.53), that the fields of 
mean temperature F and mean pressure f satisfy the equation 

B 
A 

(1.59) 

and thus they differ in profile as long as $ 2 d Y / d R  is not constant. In  the next 
section it will be shown that the horizontal transfer of westerly angular momentum 
is proportional to $ 2 d Y / d R  at any level, and thus the mean temperature and 
mean pressure profiles will differ only when there is a transfer of westerly angular 
momentum. 

2. The radial transfer of angular momentum and heat and the deriva- 
tion of the vorticity field 

In  order to throw some light on the choice of the function d Y / d R  in (1.52), it  is 
useful to calculate the transfer in the minus r direction of westerly (i.e, in the 
direction of 0 increasing) angular momentum (HH) across a circle of radius r at 
a height z. This is clearly the integral from %= 0 to 6 = 2n of the product 
-por*uou,; hence 

M,, = 4pob4w4S2r o=o aR % 2 d O .  a0 

The leading terms in the angular momentum transfer will arise from the geostro- 
phic flow discussed in the previous section, and, bearing in mind the transforma- 
tion leading to (1.20), it  follows that in terms of Po in (1.58) we have 
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Using (1.581, we have 

mB go = m$(R) cos (me - Y) - - $(R) sin (me- Y), (2.3) ae A 

Bdq5 dY 
(AdB dR 

sin(mB-Y)+ - - -$-) cos(m8-Y), (2.4) 

where 

We will now derive a general result concerning angular momentum transfer. 
The complete equation of motion in the direction of 0 increasing relative to axes 
which are fixed in space is 

where pee, Poz, pro are the viscous stresses. The appropriate continuity equation is 

and using these two equations we can deduce the Reynolds stress form of (2.7), 
namely 

We shall write mH and m, for the horizontal (-r-direction) and vertical (+z-  
direction) transports of westerly angular momentum (about r = 0) across a circle 
of radius r a t  height x ,  so that 

mH = -Jo*npuvr~d~,  (2.10) 

(2.11) 

We multiply (2.9) by dr d8 dz and integrate over an annular volume T bounded by 
zo, z1 ( > z,,), ro and rl ( > To) ,  and we then obtain after some reduction 

In the present problem the time average value of the first term is zero and hence- 
forth this term will be ignored. In  this case, equation (2.12) states that the total 
flow of westerly angular momentum outwards across the boundary S of a volume 
T is equal to the moment about r 5 0 of the viscous stresses acting on the complete 
surface S. Viscosity has been ignored in the formulation of the problem of the first 
section; but since the influence of viscosity in this angular momentum result is 
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equivalent to an appropriate supply of angular momentum across S, it is clear 
that we can simulate the effect of viscosity by an appropriate distribution of 
sources and sinks of angular momentum over 8. I shall assume therefore that 
there are distributions of sources and sinks: (a )  on the surface z = 6 which is the 
plane upper boundary of the ' boundary layer ' in 0 < z < 6, and ( b )  on the surfaces 
r = b-6, T = a+6 which are the cylindrical boundaries on the inside of the 
'boundary layers' in b - 6 < r < b, a < r < a + 6. The details of this distribution 
of sources and sinks in any given case can be obtained only by solving the com- 
plete Navier-Stokes equations, but here we shall assume that the distribution can 
be prescribed. Away from the boundary layers it is a good approximation that 
the total flow of angular momentum across the boundary X is zero, and assuming 
this to be exactly true we obtain the following result from (2.12): 

]:(% IT0 - ~ ~ l r , ) d z + ] r ~ ( m v  lzl-mvlz~dr = 0; (2.13) 

and if we take z1 = zo+6z, rl = ro+ 6r, we deduce that 

(2.14) 

This will be assumed to be valid in the range 6 < z < h, a+ 6 < r c b-6. If we 
introduce now the quantities M,, M, to represent the horizontal and vertical 
transports of westerly angular momentum for the relative flow (i.e. relative to 
axes which are rotating with angular velocity w as in Q l), then it eaaily follows 
that 

(2.16) 

Hence with the M, defined in (2.5) the corresponding Mv will be given by 

(2.16) 

(2.17) 

It is clear now that if either M H  or M, is prescribed on a plane z = constant, then 
this is equivalent to postulating the behaviour of the unknown function Y?. 

If $2(dY?/dR) = constant, it follows that M, = 0, and thus the source of angular 
momentum can be taken at the cylindrical wall r = b with an equal sink at r = a. 
If, on the other hand, there is no source or sink of angular momentum at the side 
walls, the whole of the angular momentum which emanates from one part of the 
base must be assumed to return to a sink in the remaining part of the base, so that 

/;M,dr = 0. (2.18) 

This type of angular momentum flow is the one which is similar to that of the 
atmosphere, and this case can be satisfied here proGded 

(2.19) 
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We shall discuss these results further in 0 4,  and we now turn our attention to 

The radially inward transport of heat (H.T.) across a, circle of radius r* at height 
the radially inward transport of heat. 

z* will be obtained by integrating the product Kup(a7*/ar*), hence 

The leading terms in this heat transfer will be given by 

2s AT),,32,7n-2/~!!3?!?!!! H.T. = -4KPobW ( ae ar 
and since, from (1.56), 

(2.21) 
aTo aF 1 dq5 1 a Y  - =-+--cos(mO-Y)+-#-sin(mO-\r), 
ar ar A at- A dR 

it  follows that H.T. = - 4 ~ p ~ b ~ ~ S e ~ m - ~ ( A T ) ~ n H ,  

where 

(2.22) 

(2.23) 

It will be seen that there is an essential difference between the angular momentum 
and heat transport expressions, both in their z and r variations, in particular the 
heat transport can exist even when the momentum transport is zero. 

A third quantity which will be required later in the paper is Che vorticity of the 
two-dimensional flow of the previous section; if this is denoted by Q then we have, 
working with the non-dimensional symbols, 

hence 

(2.24) 

(2.25) 

Using the expression (1.58) for Po, we obtain after some reduction 

r216 = ~ m - 2  (g + x sin (me - Y) + Y cos (me - Y) , (2.26) I 
(2.27) 

(2.28) 

We shall satisfy the Helmholtz vorticity /equation with the vorticity function 
(2.24) when we proceed to the higher approximations in the next section (see 
(3.13)). 
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3. Higher order approximations and the determination of the vertical 
velocity 

It is possible to determine the higher order approximations in this problem by 
taking power series in S for the various dependent variables taking as the first 
approximation the equations (1.14). Thus we shall take 

u = U0+SUl+S2U2+ ..., 
v = v,+Sv,+S2v2+ ...) 
20 = S W , + S 2 W 2 +  ..., 
p =po+sp1i-s2p2+ ... : 
7 = 7,fS7,+52T2+ ...) 

where u,, v,, p,, 70 are given by ( 1.14). If we substitute the above expressions in 
(1.8), (1.9), (1.  lo), (1.11) and (1.12) and equate the leading terms, (1.14) and (1.15) 
are obtained. Equating to zero the coefficients of the next power in S:  we obtain 
the following equations : 

( 3 4  
8Pl du,-v - 

dt ’ - -%’ 

(3.9) 

where the term a27,/az2 has been omitted in (3.10). From this set of five equations 
there are sufficient equations to solve for u,, vl, w,, p ,  and 7,. In  order to deter- 
mine w1 however, it  is necessary to use the three equations (3.6), (3.7) and (3.9). 

The first equation (3.6) gives 

a 
= - (p1+ @: + 9v:) - 410 go, ax 

where Q is defined in (2.24). Similarly (3.7) gives 

a 
a Y  

= - - (PI + 4G +- 9 v 3  - ~ O Q ,  

and thus by substituting for u1 and v1 in (3.9) we obtain 

(3.11) 

(3.12) 
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so that, using (1.14), we have 

hence the form of the Helmholtz vorticity equation is 

607 

(3.13) 

In  polar co-ordinates this becomes 

and it may be verified that this equation can be written in the form 

so that by using (2.13) we have 

B 

+ 2 ( g + x s l + Y c l  ~ c l - g & l ) ,  B ' I[ (3.14) 

where we have written 

s, = sinr(mO-Y), c, = cosr(rn0-Y). (3.15) 

In this expression for awl/& there will be terms independent of 19 and it is clear 
that such terms will supply the first information concerning meridional cells in the 
general circulation pattern. These terms will arise from the c: and sf products and 
are as follows: 

Using (2.14) and (2.15) we have 

B -x - Y = ( 1  + $) ($62 + 2 gg) 2 

A 
(3.16) 

and thus if we denote by Zl that part of w1 which is independent of 8 when we have 

r (  AaG L=-- la') 
a [( 1 + g) & (g5lZ)) - ( 1  + $) -& (4eg). (3.17) e3m-4 2aR 
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It may be noted that the right-hand side of this expression can be written entirely 
in terms of M which is defined in (2.6), and in this case we have the interesting 
result 

(3.18) 

which relates the meridional part of the vertical velocity with the horizontal 
angular momentum transfer. Using (1.40), an alternative form of (3.18) is 

(3.19) 

We may note that the meridional part of the vertical velocity will be identically 
zero if M shows no variation with r or if M is proportional to r2. The remaining 
terms in the expression for awl/& do not simplify in the same way as the above 
meridional part and in general we have from (3.14) 

= -  
e3m-4 2W-Z 

- 

+- X - - Y  B a# --$- X - - Y  +2# X - _ B Y  s i n . ~ ( m ~ - ~ ) .  
2 ’(( A )dR a”R( ) ( A )) 

(3.20) 

The terms which involve cos 2(mB - Y) and sin 2(mB- Y) are in general non- 
vanishing, thus w1 will consist of a meridional part, a part which varies periodic- 
ally with the wave and a part which vanes periodically with half the fundamental 
wave length. To derive w1 we can assume that w1 = 0 a t  z = 0 then w1 is the 
integral from 0 to z of the right-hand side of (3.20). 

4. Particular examples of the foregoing theory 
We consider first the boundary conditions. Since molecular viscosity is ignored, 

the condition of zero normal velocity has to be satisfied at each of the bounding 
solid surfaces. Therefore ap/aO must vanish at the cylindrical walls, in other 
words the function $ in (1.58) must be zero at these boundaries. In  the non- 
dimensional scheme in (1.6), the quantity b can be treated as the radius of the 
outer cylinder, and thus r* = b of r = 1 will represent the outer cylinder. If a is 
the radius of the inner cylinder, then T = a/b will represent the inner cylinder. In  
terms of R introduced in (1.40) the outer and inner boundaries will be R = 0 and 
R = - R, respectively, where R, = log, @/a). Thus, the velocity conditions upon 
$(R) reduce to the following: 

(4.1) #(O) = $( -22,) = 0. 

It is clear from (1.56) that the conditions of constancy of temperature will be 
satisfied on the two cylindrical boundaries due to (4.1). The only remaining 
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condition upon the temperature field is that the difference in temperature from 
one cylinder to the other must be (AT)H at some level. It follows therefore that 

7 IR=O - 7 JR=-& = 1 * (4.2) 

In  terms of F in (1.56) we must therefore have, at a particular z value, 

Up to the present the function A(z) ,  introduced originally in (1.33), has been left 
arbitrary. It will be seen from (1.51) that aF/aR is proportional to 1/A and that 
the heat flow a t  the cylindrical boundaries, namely W / a r  is also proportional to 
1/A. In  order to make the problem as simple as possible, it  is proposed to take 
uniform heat flow over the cylindrical boundaries since there is no guidance from 
the experiment in this matter, thus with no loss of generality we shall take 

A = 1, (4.4) 

in which case the constantj in (1.51) is a measure of the heat flow across a section 
of unit length of either cylinder. Accordingly, from (1.54), we have 

B = z+P,  (4.5) 

where p is an arbitrary constant. With this choice of A ,  the solutions (1.56) and 
(1.58) for To and Po become 

To = P + $(R) cos (m6 - Y), 

Po = f+ &R) sin (m6 - Y) + (p + z )  $(R) cos (me - Y). 
(4.6) 

(4.7) 

The third term of Po evidently becomes increasingly important as z increases, 
hence the phase difference of the temperature and pressure fields diminishes with 
increasing height. The constant /3 is a measure of the difference in phase of the 
temperature and pressure waves, and the value of/, here arbitrary, can be derived 
from the experiment; but whether / be positive or negative, the pressure wave 
will be ahead of the temperature wave at all levels, the departure of the two waves 
diminishing with increasing height. Thus, the pressure wave has a ‘backward tilt ’, 
i.e. to the west as in the case of atmospheric troughs. We may also observe that 
the angular momentum transfer (2.6) will have a parabolic distribution in the 
vertical when (4.4) and (4.5) are true, and the maximum transfer will take place at 
the free surface. 

It is worth while noting also that we may draw a parallel with the atmosphere 
where the heat source in the lowest layers (troposphere) is at the equator and in 
the upper layers (stratosphere) at high latitudes by taking 

1 
- = (zo - z )  e-+ 
A 

With this choice of A ,  equation (1.54) gives for B the value 

B = -?+ n ( / 3 e A z + ~ ) / ( z o - z ) .  

39 Fluid Mech. 5 
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We note that B has an infinity at the position where 1/,4 changes its sign, that is 
at the tropopause, and the pressure wave becomes 180’ out of phase with the 
temperature wave in moving through this level. This will be avoided only if ,8 is 
chosen appropriately. 

Returning now to (4.3) and using (4.4), it then follows that the appropriate 
form of this condition is 

that is 

m R=O ap 0 

-dR =J-a{j-+q52(R)]dR = -, 8 s R--Ra aR 

(4.9) 

Case I .  Zero momentum transport; N l d R  = 0. 

This case may not have much practical significance, but so many of the tech- 
nical difficulties encountered in general are also met in this simple case that it is 
worth while devoting considerable attention to it. The equation (1.52) now 
becomes 

d 3  - - (m2-j) #J + 443. 
dR2 

The first integral of (4.10) is 

(4.10) 

(4.11) 

where C is an arbitrary constant of integration. The function #J vanishes a t  the 
two end-points of the range - Ro < R 6 0; and, assuming that 4 is a continuous 
function, it is necessary that d$/dR should vanish within the R range. If we 
suppose that d4ldR vanishes when #J = #Jl, then 

0 = (m2-j) 4; + $4: + c, (4.12) 

and thus (4.13) 

Clearly it is necessary that 4 j  - 4m2 - 4; > 0 (4.14) 

in order for (dq5/dR)2 to be positive near 4 = 0; hencej is positive, or alternatively 
@ possesses an upper bound 4(j  - m2). If we write 

4; = 4 j -he -94 ,  (4.15) 

then 

We shall take 

(4.16) 

(4.17) 

since there is no loss of generality in doing this, and #1 will be taken to be positive. 

(4.18) 
If we write 

4 = 41Y7 = 3R42, 

then (4.16) becomes (4.19) 
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where k2is defined in (4.17) and 0 < k2 < 1. The solution of (4.19) which vanishes 
when R = 0 or x = 0 is the Jacobian elliptic function y = sn (x, k), and hence the 
solution of (4.16) which vanishes at R = 0 is 

9 = 91 sn { - w 2 ,  kl, (4.20) 

where a slight adjustment in sign has been made in order to make 9 > 0 when 
- Ro < R < 0. This elliptic function has an infinite number of zeros since we have 

sn (u + 2K, k) = - sn (u, k), 

sn(u+4Kn,k) = sn(u,k) (n = 0,1,2 ...). 

If that function #(R) is chosen which vanishes at the points R = 0 and R = - rZ, 
and has one simple maximum in the range - R, < R < 0, then we must have 

@0$2 = 2K; (4.21) 

but there are an infinite set of solutions for 9, the one which possesses one maxi- 
mum and one minimum being the case +Ro$2 = 4K, and the general case is 
QRO9, = 2nK. These different modes of solution are of course not superposable 
since the 9 equation is non-linear and only one of them can exist at any one time. 
We shall concentrate here on the main mode which is given by (4.21). For this 
main mode of @ with a single maximum g5 = #1 at +R1& = K where sn ( K ,  k) = 1, 
i t  follows that the position of the maximum value is such that Rl = +Ro; in terms 
of r ,  this indicates that the maximum is at rl, where rl = r i  = (a/b) t ,  and in terms 
of the original variables a t  r t  = (ab)*, the geometric mean of the radii of the two 
cylinders. 

The quantity K which appears in (4.21) is a function of k, and, when k is known, 
K can be found from tables. Since k = q51/q52 and q52 is a function of j (4.15), it  
follows that (4.21) is a relation between j and Qll. We may observe that, since 
q51 < 92, then from (4.15) we obtain 

(4.22) 9: < 2j - h2 < 9;. 
If we use (4.9), we obtain a second relation betweenj and #1, namely 

hence 
m 
E 

The complete elliptic integral E of the second kind is defined by 

E = loKdn2 (2, k) dx, 

and since dn2 (x, k) = 1 - k2 sn2(x, k), it follows 

(4.23) 

(4.24) 

K - E  
sn2(x,k)dx = -. 

k2 ’ 
(4.25) 

39-2 



612 T .  V .  Duvies 

hence, from (4.23), jR  - m -+%(K--E). 
O -  € 

(4.26) 

Equations (4.15), (4.17), (4.21) and (4.26) now represent four independent equa- 
tions between $1, g2, k and j  and 6 .  Hence, this can be regarded as a one-parameter 
problem in the sense that if one of these five quantities is defined then, in theory, 
the other four can be determined; the quantity E is regarded as a parameter since 
the quantity w is the angular velocity of the wave system (not the angular 
velocity of the apparatus) and is not therefore a prescribed quantity. It is 
probably most convenient to treat k as the parameter at our disposal in the range 
0 < k < 1. In  terms of k we have 

2wSb2 1 4K{ 2E - K ( 1 - k2)}  __ - _ -  - -mR,+- 
K E  mR0 

(4.27) 

(4.28) 

(4.29) 

Using these relations it is possible to throw some light on the conditions necessary 
for the existence of a particular wave number; their usefulness, however, is much 
reduced by the fact that the angular velocity w in (4.29) is the angular velocity of 
the wave system with respect to fixed space axes and not the angular velocity w, 
of the apparatus as a whole. The difference between w and w, is small and of the 
order S. 

We consider first equation (4.29) which is of the form 

(4.30) 

where p2 = 4K{2E- K ( l -  k2)). For a given R, (=  log b/u), a given m and 
a given k this relation between w and S in the (w,  S)-plane is arectangular hyper- 
bola which we denote by I?. As k varies from 0 to 1, it is easily shown that p2 moves 
from a minimum value of n2 when k = 0 and increases monotonically to + 00 as 
k tends to 1. Thus, if we let rm denote the rectangular hyperbola 

(4.31) 

it follows that as k moves from 0 to 1 the curve l7 in the (0, #)-plane sweeps out 
that infinite area I? > rm which lies on the side of the curve rm remote from the 
origin. Since the minimum value of mR, + (n2/mRo), considered as a function of 
mR,, is attained when mR, = n and its value is then 27r, it  follows that the curves 
rl, r2, r3, . . . , corresponding tom = 1,2,3, . . . , will move nearer to the origin until 
that integral value of m = m* is attained which makes m*Ro nearest 7r, end for m 
values greater than m* the curves rm will recede from the origin. For example, 
with b = 2u(R, = 0-6931), the successive curves r,(s = 1,2, ..., 5), approach the 
origin successively, but from m = 6 onwards the curves recede from the origin. 
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If we consider one of these curves, say rl, then given a value of o = w‘ and of 
S = S‘ we can deduce that if the representative point (w’,S’) is on the origin 
side of the curve rl, then this particular wave number cannot exist with such a 
rotation and such a Rossby number. Alternatively, if the point (w’, S‘) is on the 
side of the curve rl remote from the origin, then there will be a unique k value 
in the range 0 < k < 1 which will define the strength of the corresponding wave. 
A similar argument will apply to every curve rZ, r3, . . . , of the family I?,, and 
we then have the following overall results: 

(a)  wave number m = 1 cannot exist if the point (0, S) lies on the origin side of 

(b )  wave numbers m = 1, m = 2 cannot exist if the point (0,s) lies on the 

( c )  wave numbers m = 1, m = 2, m = 3 cannot exist if the point (w, S )  lies on 

and so on until that particular value of m = m* is attained which makes m*R, 
nearest n; and for this case and beyond we have 

(d) no wave numbers can exist if the point (0,s) lies on the origin side of the 

the curve Fl; 

origin side of the curve I?,; 

the origin side of the curve r3; 

curve I?+ 

FIGURE 2. A schematic theoretical stability diagram. 

In  this final case ( d )  the theory does not give any indication of the particular 
flow pattern which will occur, but it may be inferred that the flow must be the 
spiral (or symmetric Hadley) type. The results stated in (a)  to (d) above are 
summarized in diagrammatic form in figure 2. 

It is of considerable interest to insert in figure 2 also the results concerning the 
existence of waves which were obtained by the present author in a stability 
investigation (1956). These results apply to infinitesimal waves, and the theory in 
that paper indicates that a wave number m can exist only if the Rossby number is 
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less than a certain critical value. For convenience, table 5 of the earlier paper is 
reproduced below and expressed in terms of the parameters of this paper, the 
Rossby number Rog of the earlier paper being related? to the present S by the 
formula S = i ( 1  -a/b)Ro$ and table 1 refers to the case b = 2a. This table is 
interpreted as follows: spiral flow will exist if S > 0-055, wave number m = 1 can 
also exist if S > 0.05, spiral flow and wave numbers m = 1 , 2  can exist if S > 0.03 
and so on. When we insert the lines S = 0.055, S = 0.05; S = 0.03, and so on, in 
figure 2 we can interpret the diagram in the following way. On the origin side of 
the curve AIBICl, the wave number m = 1 cannot exist; on the origin side of the 
curve A2B2C2 the wave number m = 2 cannot exist, and so on. At such a point 
as P i n  this diagram it would then appear that any one of the wave patterns m = 1, 
m = 2 or m = 3 can exist; other factors must clearly enter into the discrimination 
between these possible wave patterns since only one wave is known to exist at any 
one time. 

(Mean temperature 21 “C, a=2*1 x 

Wave number m 0 1 2 3 4 5 
Critical value of S 0.07 0.055 0.05 0.03 0.02 0.01 

TABLE 1. Annulus case b = 2a 

We now consider the heat transported by a particular wave pattern, this being 
equal to the heat flow across either of the cylindrical boundary walls. The heat 
flow per unit axial length across T* = b is given by 

Using (1.51) and also the boundary condition q5 = 0 at R = 0, we obtain 

The Nusselt number Nu (Hide 1958) for this problem may be defined by 

@ - a ) &  . NU = 
27rb~p, cp( AT% ’ 

and thus in the case A = 1 we have 

(1 - a/b) maRi +j?( 1 + k2) 
R, m2R% + 4K{2E - K (  1 - k2)}. 

NU = 

(4.32) 

(4.33) 

It is easily shown that (1 - a/b)/Ro is the Nusselt number for an annulus of solid 
but uniform material when the cylindrical boundaries are subject to a differential 
temperature; and if this basic Nusselt number is denoted by Nu*, it follows that 

t The small error due to the angular velocity definitions being slightly different will be 
ignored here. 
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the presence of liquid in the annulus has the effect of increasing the effective 
Nusselt number in the ratio 

Nu 
Nu* = m2R,2 + 4K(2E - K( 1 - k2)) 

If k is near zero we have Nu + NU*, but if k is near its upper limit of unity we have 
K - log (4/4(1- k2)), E N 1, so that 

m2R,2 + 4K2( 1 + k2) 
(4.34) 

Nu K 4 
Nu* E log(i(l-k2)) '  
---= (4.35) 

Thus the heat flow can be increased indefinitely if k can be made to tend to unity. 
It is possible to use this concept of heat transport in order to help discriminate 

between different regions in the (w,  8)-plane. Consider the point L in the (w,  8)- 
plane which lies on rl, and which is in the zone between A$, and A3B3. At this 
point, waves m = 1 and m = 2 are possible. Reckoned relative to the curve rl, 
the value of k at L is 0, and the associated Nu for this point will be 

(Nu)L,m-l = Nu*. 

At this same point the value of k reckoned relative to the curve Pz is k,, where 

,~ ' (k2)  = 2(n2- Ri),  

and the corresponding value of Nu is 

Hence, the m = 2 wave at L is capable of transporting more heat than the m = 1 
wave. If one then assumes that the preferred liquid motion is always that one 
which transports the greatest amount of heat, then the point L will correspond to 
the m = 2 wave. A similar argument will apply to any point in the restricted zone 
between A,B, and A3B3, and consequently this zone will correspond to them = 2 
wave. Kuo (1957), in a stability investigation, discusses this same zone between 
A2B, and A3B, and arrives at a similar conclusion using a different method, 
namely that in moving across A,B2 into this zone the m = 2 wave is the one 
which has maximum growth rate. 

On this basis the whole of the (w,S)-plane can be subdivided into definite 
regions where one can expect symmetric flow, wave number 1, wave number 2 and 
so on, and the complete picture is shown in figure 2.t We can look upon the lines 
A,B,, A2B2, . . . as lines of dynamical instability, that is where the infinitesimal 
amplitude waves successively become resonated, and upon the curves rl, I?,, . , . 
as curves of heating instability where the liquid has to change its wave pattern 
due to the amount of heat available being excessive or insufficient to maintain 
a particular wave form. 

If we apply the heat transport argument to a point in the ( w ,  #)-plane which lies 
on rS and is in the zone between AsB6 and A,B, (we deal specifically here with the 

t The scales used in the schematic diagram (figure 2) may be inferred from the fact that 
the right-hand side of (4.30) has the order of magnitude 
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case b = 2a), it follows that, since rS is on the side of r5 remote from the origin, 
the heat transport associated with m = 6 is less than that associated with m = 5. 
Thus, in such a geometrical configuration the maximum possible amount of heat 
can be transported by the steady wave m = 5, and beyond this m value the steady 
waves become less efficient as transporters of heat. It is of course not possible by 
this argument to prove that wave numbers 6 ,7 ,8 ,  . . ., cannot occur, but they are 
certainly less efficient as transporters of heat than is wave number 5. 

10- 

10’ 

8 
10- 

10- 

2 

5 
1 Experimental annulus 

transition curves 
2 b =  2a =495 an 

h = 13.0 cm 
2 4 6  2 ‘ + 6  2 4 6  

10.~ i lo-* i lo-‘ 
b d l g  

FIGURE 3. Experimental annulus transition curves obtained by Fultz. 

We may compare figure 2 with one recently prepared by Fultz for the case 
b = 2a. The ordinate in the Fultz diagram, figure 3, is the Rossby number and the 
abscissa is a quantity proportional to ot ; and it will be noted that there is a broad 
overall agreement between the two diagrams. There is a considerable complexity 
in the Fultz diagram for the lowest Rossby numbers where wave numbers 6 and 7 
appear, and Fultz has described this region as containing types of instability 
which are inherently complicated. It is significant that this region of complicated 
wave features is associated in the theoretical investigation with the heat transport 
attaining its maximum value on rS. Assuming that the value m* gives an indica- 
tion of the maximum number of steady wave8 in any given geometrical 
configuration, we have in general 

(4.36) 

where [XI denotes that integral value which is closest to x. As b approaches a, 
log @/a) tends to zero and m* becomes large (this is observed experimentally; up 
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to 15 waves have been produced in a sufficiently narrow annulus); as a tends to 
zero and lies in the range 0 < a < be+, it  would appear that no wave motion is 
then possible. 

For moderate values of k the typical magnitude of Nu from (4.33) is 2 or 3; 
Fultz in a private communication gives values of Nu which are of order 30 and 
over. It is clear therefore that the process of molecular conduction as assumed 
here cannot be the correct one for the transfer of heat in this problem. It is possible 
of course to postulate the existence of an eddy conductivity in order to achieve 
the correct order of magnitude for the heat transfer, but the more correct con- 
clusion is probably that the bulkof the heat transfer is effected by theageostrophic 
flow. In  this same communication, Fultz states that 'there is a faint indication 
of an increase of Nu with m or some possibility of a maximum for intermediate m; 
it is also probable that there might be local maxima in the regions of strong 
vacillation '. This is in qualitative agreement with the picture described above, 
and it is possible to accept the present theory in as much as it provides insight into 
the mechanism of the change-over from one wave pattern to another. In  this 
respect also we may compare (4.36) with an experimental result due to Hide, 
namely 

(4.37) 

Since 

it follows from (4.36) that we have approximately 

m* b-a  _ _ _  ~ (b+a)(l+irez)z+...) = 0.5; 

and thus this also provides some justification for accepting (4.36) as the upper 
limit of the wave number. 

The function q5 being known, the functions F and f can now be determined. 
Using (4.4) and (1.51), we have 

(4.38) 

there being no loss of generality in making F = 0 for R = 0. This gives the mean 
temperature field in the liquid. The mean pressure fieldfis given by (1.53); and in 
the present case d'4'ldR = 0, we have 

and f = (p + z )  { j R  - aq5y/:Rsna { - k) dR + constant. (4.39) I 
As mentioned earlier the profiles of mean temperature and mean pressure at any 
height z are identical. 

since 
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from (4.27) it follows that aF/aR is always positive; and thus the mean tempera- 
ture and mean pressure therefore increase monotonically with r. The minimum 
gradient will be encountered at r* = (ab), and the maxima of the gradient and 
therefore the maximum mean zonal velocity at the cylindrical walls. The action 
of viscosity in practice may invalidate this result near the bounding walls of the 
annulus. 

Case I I .  Momentum transport proportional to qP(R); dY ' ldR = constant 

In  this case we shall assume that 

(4.40) 

where h is a constant. This implies that Y = mhlogr, and also, from (2.5) and 
(2.6), that the angular momentum transport is proportional to d2(R).  Since # 
vanishes at the bounding cylindrical walls and attains a maximum in the liquid 
between, it follows that the angular momentum shows a similar type of profile, 
and in order to produce such a horizontal transfer there will be in this case 
a mechanism supplying or withdrawing westerly angular momentum in the 
vertical direction. The equation (1.52) in this case becomes 

dR2 
~ = (m2 + m2h2 - j )  # + 9#3; 
d2$ 

(4.41) 

and, comparing (4.41) with (4.10), it is clear that the only difference between 
Case I and Case I1 lies in the coefficient of # and that all the results pertaining to 
this case can be deduced from Case I provided m2 is replaced by m2( 1 + A2). Thus, 
the formulae which replace (4.27) and which apply to this case will be 

4K 4kK 
$ 2 = R , ,  #l=z> 

j = m2(1 + A 2 )  + 
1 4K 
- = mR0(1+A2)+--(2E-K(1-k2)}.  
E mR0 

(4.42) 

The formula for F ,  the mean zonal temperature, will be the same as (4.29), but the 
formula for af/aR, given by (1.53), is in this case 

(4.43) 

The solution for f, the mean zonal pressure, will be 

f = (P + z )  ( jR - 
-R I sn2 ( - SR$,, k) dR + 2mhlog $, (4.44) 

and, since # vanishes at the two bounding walls it will be seen that the mean 
zonal pressure and mean zonal velocity have singularities at the boundaries. 
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Case I I I .  Momentum transfer proportional to d3; d Y / d R  = y&R) 
One of the objections to the previous case is that the mean zonal pressure and 
velocity fields have singularities at the cylindrical bounding walls. Here we 
investigate a solution which does not suffer from this disadvantage. The formula 
(1.53) for af/aR indicates that the singularity in the zonal velocity arises from the 

1 d dY 
term- - q52 - on the right-hand side; and provided N j d R  has a simple zero 

q52dR( dR) 
a t  each of the bounding walls, the singularity will not arise. If, for example, Y 
is such that 

(4.45) 

where s 2 1, then the singularity of af/aR is avoided. We consider here the par- 
ticular case 8 = 1, and shall take 

(4.46) 

but the best possible value of s to choose must await a closer comparison with 
experiment. Whatever the deficiencies of this choice it has the great merit that 
the problem can be completely solved in this case and thus we can find what 
modifications are introduced into the solution by the presence of an angular 
momentum transfer. 

dyr 
- = yq5 dR ( y  = constant); 

Equation (1.52) for q5 now becomes 

(4.47) 

and this case can, as before, be solved in terms of elliptic functions. The first 
integral of (4.47) is 

d2d 
z 2  = (m2 -j) d + (Y2 + 3, d3> 

and if we suppose that dq5/dR vanishes when q4 = 
can be expressed in the form 

it follows that this equation 

where 

(4.48) 

(4.49) 

As before there is no loss of generality in taking 515~ > 
k = $1/q52, where 0 < k < 1. The appropriate solution of (4.49) is 

and we shall choose 

d = dl sn(- iR$,J(I + 2Y2)> q> (4.50) 

and this will satisfy both boundary conditions (4.1) provided 

9ROd2 J( 1 + 2y2) = 2K. (4.51) 
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The solution (4.50) has its maximum at the geometrical mean value r* = (ab)h; 
thus, this result is not influenced by momentum transport. The condition (4.9) 
becomes 

(4.52) 

and thus the four equations which generalize the set (4.27) to (4.29) are as follows: 

(4.53) 

(4.54) 

(4.55) 

where v2 = ___ (2E - K [ (  1 - k2) - 2yy1 + P)]}. (4.56) 

These equations can be interpreted as in the first case. It is easily shown that the 
quantity u2 defined in (4.56) increases monotonically from the value 7 9  at k = 0 to 
infinity as k tends to unity, and thus it follows that all the detailed features of the 
stability diagram are not influenced by momentum transfer, in particular the 
result (4.36) for the maximum number of waves remains unchanged. 

The formula for the mean temperature field is similar to the previous case, and 
is given by 

4K 
1 +2y2 

0 

F = j R  - +q5;/-Rsn2 { - *R& J( 1 + 2y2), k) dR. (4.57) 

The mean zonal velocity field aflar can be deduced from af/aR using (1.53) and 
(4.37), which give 

af = B_( j -+92) -3y - ;  d9 
aR A dR (4.58) 

and thus the solution for the mean zonal pressure function becomes 

0 

f = (/3 + z)  ( j R  - f#:/-/n2 ( - 4R92 J( 1 + 2y2), k) dR) - 3y+(R) + constant. (4.59) 

In  the case of zero momentum transfer (y  = 0)) it was noted that af/aP maintains 
the same sign for all values of R in the range - Ro < R < 0, but in (4.46) i t  will be 
observed that 

(g) = ( P + z ) j  + $Y J ( 1 +  27’) 9192, (4.60) 
R-0 

(4.61) 

so that if y is negative and sufficiently large (which ensures a transfer of westerly 
angular momentum towards r = 0) or if pis sufficiently small, then the possibility 
exists of a reversal in the direction of the mean zonal velocity. This suggests that 
the presence of easterlies embedded in a westerly zonal flow implies an angular 
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momentum flow, as is well known to meteorologists. Using (4.48), we can say 
that if y < 0 and 1 7 4 1  + 2Y2) $1421 ' QP, (4.62) 

then easterlies will appear near the outer (hotter) cylinder. 
It is of some interest in this case to determine the meridional part of the vertical 

velocity which is given by (3.18). We have 

(4.63) 

Near the boundary walls the right-hand side behaves like 3#(d$/dR)2; hence the 
mean vertical velocity will be upwards (wl = 0, z = 0). At the position of maxi- 
mum $, we have d$/dR = 0; hence the right-hand side is #$2d2$ldR2, which is 
necessarily negative. Hence, in the neighbourhood of the maximum value of $, 
the mean vertical velocity is downwards. This velocity implies the existence of at 
least two cells, a direct cell near the outer cylinder and an indirect cell near 
the inner cylinder, and by considering the changes of sign of i$$" + $'2 - $4' 
it  may be verified that there are two and only two zeros of W1 between R = 0 
and Rl = - R,, and hence there are only two cells in the meridional structure. 

Case I V .  The open dishpan problem. Non-existence of a continuous solution for $ 
In  this case we assume that the inner cylinder is removed and the liquid is 
enclosed by one cylinder of radius b. The boundary conditions to be satisfied by 
the function $ are now as follows. At the outer cylinder the normal velocity must 
vanish hence as before we must have $(O) = 0. At the central axis r = 0, or 
R = - co, since there is no source along the axis it is necessary that ap/aO should 
vanish along the axis, hence $( -a) = 0. In  addition, since u, must vanish at 
r = 0, it is necessary that $'( - 03) = 0. Hence we must have 

#(O) = 0, #( -00) = $'(-a) = 0. 

Since two derivatives vanish at R = - co, i t  follows from (4.38) that all the deriva- 
tives will vanish there, hence $ = 0. Thus, no continuous non-zero solution exists. 
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